Category Archives: General Relativity

Weighted Hsiung-Minkowski formulas and rigidity of umbilic hypersurfaces

1. Motivation and Main Results A. D. Alexandrov [Ale1956], [Ale1962] proved that the only closed hypersurfaces of constant (higher order) mean curvature embedded in are round hyperspheres. The embeddedness assumption is essential. For instance, admits immersed tori with constant mean … Continue reading

Posted in Calculus, General Relativity, Geometry, Inequalities | Leave a comment

A functional inequality on the boundary of static manifolds

1. introduction and statement of results The research in this article is largely motivated by the following result concerning a functional inequality on the boundary of bounded domains in the Euclidean space , proved in [MTX] Corollary 3.1. Theorem 1 … Continue reading

Posted in Calculus, General Relativity, Geometry, Inequalities | Leave a comment

A positive mass theorem and Penrose type inequalities for the Gauss-Bonnet-Chern mass

In a recent preprint [GWW1], Ge, Wang and Wu proposed a family of new masses () for an asymptotically flat manifold and proved a positive mass theorem and some Penrose type inequalities for graphs, at least when . They remarked … Continue reading

Posted in Calculus, General Relativity, Geometry, Inequalities | Leave a comment